论文标题
聚合物在接近临界温度下的半径
The Radius of a Polymer at a Near-Critical Temperature
论文作者
论文摘要
我们考虑具有球形对称有限支持电位的聚合物的平均场模型。我们描述了聚合物的典型尺寸如何取决于两个参数:接近临界值的温度和聚合物链的长度,该温度转到无穷大。
We consider a mean-field model of a polymer with a spherically-symmetric finitely supported potential. We describe how the typical size of the polymer depends on the two parameters: the temperature, which approaches the critical value, and the length of the polymer chain, which goes to infinity.