论文标题

方向性拉普拉斯(Laplacian)的网络情境意识中心

Directional Laplacian Centrality for Cyber Situational Awareness

论文作者

Aksoy, Sinan G., Purvine, Emilie, Young, Stephen J.

论文摘要

网络运营淹没在多样化的大量,多源数据中。为了全面了解当前的操作并确定恶意事件,并且参与者分析师必须通过人类活动和良性自动化过程产生的数据来查看。尽管存在许多监视和警报系统,但它们通常使用基于签名的检测方法。我们介绍了一种植根于光谱图理论的通用方法,以发现模式和异常,而没有先验的签名知识。我们根据顶点方向的图形laplacian矩阵的导数提出并提出了一种新的图理论中心度度量。为了建立有关我们的度量的直觉,我们展示了它如何识别标准网络数据集中最中心的顶点,并与其他图中心度度量进行比较。最后,我们将注意力集中在研究其在识别网络流数据中重要的IP地址方面的有效性上。使用真实和合成网络流数据,我们进行了多个实验,以测试测量对两种注入的攻击曲线的敏感性,并表明参与注射攻击概况的顶点在我们的中心度措施中显示出明显的变化,即使注射的异常相对较小,并且在存在模拟网络动力学的情况下也会显示出明显的变化。

Cyber operations is drowning in diverse, high-volume, multi-source data. In order to get a full picture of current operations and identify malicious events and actors analysts must see through data generated by a mix of human activity and benign automated processes. Although many monitoring and alert systems exist, they typically use signature-based detection methods. We introduce a general method rooted in spectral graph theory to discover patterns and anomalies without a priori knowledge of signatures. We derive and propose a new graph-theoretic centrality measure based on the derivative of the graph Laplacian matrix in the direction of a vertex. To build intuition about our measure we show how it identifies the most central vertices in standard network data sets and compare to other graph centrality measures. Finally, we focus our attention on studying its effectiveness in identifying important IP addresses in network flow data. Using both real and synthetic network flow data, we conduct several experiments to test our measure's sensitivity to two types of injected attack profiles, and show that vertices participating in injected attack profiles exhibit noticeable changes in our centrality measures, even when the injected anomalies are relatively small, and in the presence of simulated network dynamics.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源