论文标题

中微子质量,真空稳定性和量子质量预测

Neutrino masses, vacuum stability and quantum gravity prediction for the mass of the top quark

论文作者

Domènech, Guillem, Goodsell, Mark, Wetterich, Christof

论文摘要

渐近安全量子重力的总体预测是在紫外线固定点以外的紫外线固定点上所有四分位标量耦合的大致消失。普朗克量表附近的消失的希格斯双重四分之一耦合转化为希格斯玻色子$ m_h $与顶级夸克$ m_t $之间的比率。如果只有标准模型粒子有助于在planck质量下方的耦合的运行,则观察到的$ M_H \ sim125 \,{\ rm Gev} $导致对顶级夸克质量$ M_T \ sim 171 \ \,{\ rm Gev} $的预测。在这项工作中,我们研究了顶级夸克质量的渐近安全预测如何受到中等规模的物理学影响。我们研究了$ su(2)$三重态标量和右撇子中微子的效果,这些中微子需要解释左手中微子的少量。对于Pure Seesaw II,没有或非常重的右手中微子,顶部可以增加到$ M_T \ SIM 172.5 \,{\ rm Gev} $,对于三重态$M_Δ\ SIM 10^8 {\ rm GEV} $,均可以增加。右手中微子的质量在中等规模上增加了$ m_t $的预测,这是由于右撇子中微子的Yukawa耦合以及标量潜力的立方相互作用而导致的。对于适当的Yukawa耦合,不再存在真空稳定性的问题。

A general prediction from asymptotically safe quantum gravity is the approximate vanishing of all quartic scalar couplings at the UV fixed point beyond the Planck scale. A vanishing Higgs doublet quartic coupling near the Planck scale translates into a prediction for the ratio between the mass of the Higgs boson $M_H$ and the top quark $M_t$. If only the standard model particles contribute to the running of couplings below the Planck mass, the observed $M_H\sim125\,{\rm GeV}$ results in the prediction for the top quark mass $M_t\sim 171\,{\rm GeV}$, in agreement with recent measurements. In this work, we study how the asymptotic safety prediction for the top quark mass is affected by possible physics at an intermediate scale. We investigate the effect of a $SU(2)$ triplet scalar and right-handed neutrinos, needed to explain the tiny mass of left-handed neutrinos. For pure seesaw II, with no or very heavy right handed neutrinos, the top mass can increase to $M_t\sim 172.5\,{\rm GeV}$ for a triplet mass of $M_Δ\sim 10^8{\rm GeV}$. Right handed neutrino masses at an intermediate scale increase the uncertainty of the predictions of $M_t$ due to unknown Yukawa couplings of the right-handed neutrinos and a cubic interaction in the scalar potential. For an appropriate range of Yukawa couplings there is no longer an issue of vacuum stability.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源