论文标题

最大局部的动力量子嵌入,用于求解多体相关系统

Maximally Localized Dynamical Quantum Embedding for Solving Many-Body Correlated Systems

论文作者

Lupo, Carla, Jamet, François, Tse, Terence, Rungger, Ivan, Weber, Cedric

论文摘要

我们提出了一种基于扩展的精确对角度方法的动态均值理论的背景下在动态均值理论的背景下解决安德森杂质模型的量子嵌入方法。我们的方法提供了一个最大局部的量子杂质模型,其中相关电位的非本地成分保持最小。该方法具有很大的好处,因为量子嵌入方法中使用的环境是通过传播相关电子来描述的,因此提供了多项式增加$ O(n^4)$(n^4)$(嵌入映射的自由度),而无需添加浴室。我们报告说,量子杂质模型只有3个浴位位点可以再现Mott Transition和Kondo物理学,从而为描述时间依赖性现象的描述打开了更容易接近的途径。最后,我们获得了动态磁敏感性的极好一致性,以这种方法作为描述2个粒子激发(例如相关系统中的激发子)的候选者。我们预计我们的方法将对在量子计算机上实施嵌入算法非常有益,因为它允许对材料中的相关性进行精细描述,这些材料的相关性数量减少了所需的码头。

We present a quantum embedding methodology to resolve the Anderson impurity model in the context of dynamical mean-field theory, based on an extended exact diagonalization method. Our method provides a maximally localized quantum impurity model, where the non-local components of the correlation potential remain minimal. This method comes at a large benefit, as the environment used in the quantum embedding approach is described by propagating correlated electrons and hence offers a polynomial increase $O(N^4)$ of the number of degrees of freedom for the embedding mapping without adding bath sites. We report that quantum impurity models with as few as 3 bath sites can reproduce both the Mott transition and the Kondo physics, thus opening a more accessible route to the description of time-dependent phenomena. Finally, we obtain excellent agreement for dynamical magnetic susceptibilities, poising this approach as a candidate to describe 2-particle excitations such as excitons in correlated systems. We expect that our approach will be highly beneficial for the implementation of embedding algorithms on quantum computers, as it allows for a fine description of the correlation in materials with a reduced number of required qubits.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源