论文标题
离子陷阱中的kelvin温度管理光学时钟
Sub-kelvin temperature management in ion traps for optical clocks
论文作者
论文摘要
由于热辐射引起的交流恒定转移的不确定性代表了对最先进的光原子时钟系统不确定性预算的主要贡献。在基于捕获离子的光学时钟的情况下,必须精确知道RF驱动离子陷阱的热行为。当使用可扩展线性离子陷阱时,这种确定更加困难。这样的陷阱可以对多种离子进行更高级的控制,并已成为量子计量,仿真和计算新应用的平台。然而,它们的复杂结构使精确确定其运行温度以及相关的系统不确定性变得更加困难。我们在此提出了用于光学时钟的可伸缩线性离子陷阱,该陷阱在操作下显示出非常低的温度升高。我们使用具有实验测量的有限元模型来确定离子陷阱中的热分布和离子位置处的温度。用红外摄像头和集成温度传感器以不同的RF驱动频率和振幅研究陷阱温度。我们表明,对于$ \ mathrm {in}^{+} $,$ \ mathrm {al}^{+} $,$ \ mathrm {lu}^{+}^{+} $,$ \} $ \ mathrm {yb}^{+} $离子,由于陷阱的射频加热而导致的离子位置的温度升高在700 mk以下,并且可以以最大100 mk的最大值来控制不确定性。
The uncertainty of the ac Stark shift due to thermal radiation represents a major contribution to the systematic uncertainty budget of state-of-the-art optical atomic clocks. In the case of optical clocks based on trapped ions, the thermal behavior of the rf-driven ion trap must be precisely known. This determination is even more difficult when scalable linear ion traps are used. Such traps enable a more advanced control of multiple ions and have become a platform for new applications in quantum metrology, simulation and computation. Nevertheless, their complex structure makes it more difficult to precisely determine its temperature in operation and thus the related systematic uncertainty. We present here scalable linear ion traps for optical clocks, which exhibit very low temperature rise under operation. We use a finite-element model refined with experimental measurements to determine the thermal distribution in the ion trap and the temperature at the position of the ions. The trap temperature is investigated at different rf-drive frequencies and amplitudes with an infrared camera and integrated temperature sensors. We show that for typical trapping parameters for $\mathrm{In}^{+}$, $\mathrm{Al}^{+}$, $\mathrm{Lu}^{+}$, $\mathrm{Ca}^{+}$, $\mathrm{Sr}^{+}$ or $\mathrm{Yb}^{+}$ ions, the temperature rise at the position of the ions resulting from rf heating of the trap stays below 700 mK and can be controlled with an uncertainty on the order of a few 100 mK maximum.