论文标题
关于康托尔最小系统因素的拓扑排名
On Topological Rank of Factors of Cantor Minimal Systems
论文作者
论文摘要
如果cantor最小系统具有有限的拓扑等级,则它具有曲折的Vershik表示,其每个级别的顶点均匀地界定。我们证明,如果Cantor集合上最小动态系统的拓扑等级是有限的,那么其所有最小的Cantor因子也具有有限的拓扑等级。这给了Donoso,Durand,Maass和Petite提出的一个问题。
A Cantor minimal system is of finite topological rank if it has a Bratteli-Vershik representation whose number of vertices per level is uniformly bounded. We prove that if the topological rank of a minimal dynamical system on a Cantor set is finite then all its minimal Cantor factors have finite topological rank as well. This gives an affirmative answer to a question posed by Donoso, Durand, Maass, and Petite.