论文标题

递归多模型互补的深融合forrobust显着对象通过平行子网络检测

Recursive Multi-model Complementary Deep Fusion forRobust Salient Object Detection via Parallel Sub Networks

论文作者

Wu, Zhenyu, Li, Shuai, Chen, Chenglizhao, Hao, Aimin, Qin, Hong

论文摘要

完全卷积的网络在显着对象检测(SOD)字段中显示出出色的性能。最先进的方法(SOTA)方法具有更深和更复杂的趋势,可以轻松地将其学习的深度特征均匀,从而产生清晰的性能瓶颈。与传统的``更深''方案形成鲜明对比的是,本文提出了``更广泛的''网络体系结构,该网络体系结构由具有完全不同网络架构的平行子网络组成。这样,通过这两个子网络获得的那些深度特征将表现出较大的多样性,这将具有巨大的潜力,可以彼此相互补充。但是,较大的多样性很容易导致特征冲突,因此我们使用密集的短连接来使平行的子网络之间进行递归相互作用,从而追求多模型深度特征之间的最佳互补状态。最后,所有这些互补的多模型深度功能都将被选择性地融合以进行高性能显着对象检测。对几个著名基准的广泛实验清楚地表明了拟议更广泛的框架的出色表现,良好的概括和强大的学习能力。

Fully convolutional networks have shown outstanding performance in the salient object detection (SOD) field. The state-of-the-art (SOTA) methods have a tendency to become deeper and more complex, which easily homogenize their learned deep features, resulting in a clear performance bottleneck. In sharp contrast to the conventional ``deeper'' schemes, this paper proposes a ``wider'' network architecture which consists of parallel sub networks with totally different network architectures. In this way, those deep features obtained via these two sub networks will exhibit large diversity, which will have large potential to be able to complement with each other. However, a large diversity may easily lead to the feature conflictions, thus we use the dense short-connections to enable a recursively interaction between the parallel sub networks, pursuing an optimal complementary status between multi-model deep features. Finally, all these complementary multi-model deep features will be selectively fused to make high-performance salient object detections. Extensive experiments on several famous benchmarks clearly demonstrate the superior performance, good generalization, and powerful learning ability of the proposed wider framework.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源