论文标题

保证特征值和特征向量的后验界:倍数和群集

Guaranteed a posteriori bounds for eigenvalues and eigenvectors: multiplicities and clusters

论文作者

Cancès, Eric, Dusson, Geneviève, Maday, Yvon, Stamm, Benjamin, Vohralík, Martin

论文摘要

本文介绍了构成具有紧凑分辨率的二阶自动化椭圆线性线性算子的特征值簇的数值近似值的后验误差估计。给定特征值群体,我们估计特征值之和中的误差,以及通过密度矩阵表示的特征向量的误差,即相关特征的正交投影仪。这使我们可以在框架内处理堕落的(多个)特征值。在唯一假设群集与周围较小和较大的特征值分离的唯一假设下,所有边界都是有效的。我们展示了如何检查该假设。我们的边界得到保证,并以与确切错误相同的速度收敛。可以在可用的剩余双重规范的估计中立即变成完全可计算的范围,在两种情况下,这是在两种情况下提出的:laplace eigenvalue问题与有限的元素离散化,以及与PlanEweLewaveS的表格$ -ULID-V $ + V $ + V $ + V $ + V $ + VINDER SCHR {ö} dinger操作员。对于这两种情况,在一组测试问题上提供了数值插图。

This paper presents a posteriori error estimates for conforming numerical approximations of eigenvalue clusters of second-order self-adjoint elliptic linear operators with compact resolvent. Given a cluster of eigenvalues, we estimate the error in the sum of the eigenvalues, as well as the error in the eigenvectors represented through the density matrix, i.e., the orthogonal projector on the associated eigenspace. This allows us to deal with degenerate (multiple) eigenvalues within the framework. All the bounds are valid under the only assumption that the cluster is separated from the surrounding smaller and larger eigenvalues; we show how this assumption can be numerically checked. Our bounds are guaranteed and converge with the same speed as the exact errors. They can be turned into fully computable bounds as soon as an estimate on the dual norm of the residual is available, which is presented in two particular cases: the Laplace eigenvalue problem discretized with conforming finite elements, and a Schr{ö}dinger operator with periodic boundary conditions of the form $--$Δ$ + V$ discretized with planewaves. For these two cases, numerical illustrations are provided on a set of test problems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源