论文标题

在calabi-yayau分数完整交叉点上

On Calabi--Yau fractional complete intersections

论文作者

Lee, Tsung-Ju, Lian, Bong H., Yau, Shing-Tung

论文摘要

在本文中,我们研究了一对奇异的calabi-yau歧管的镜像对称性,这些歧管是感谢您的双层折叠术。他们的周期积分可以看作是普通完整交集的某些“分数”类似物。然后,这种新结构可以用来解决他们的Riemann-Hilbert问题。然后,后者可以用来回答有关此类calabi-yau歧管的镜面对称性的明确问题。

In this article, we study mirror symmetry for pairs of singular Calabi--Yau manifolds which are double covers of toric manifolds. Their period integrals can be seen as certain `fractional' analogues of those of ordinary complete intersections. This new structure can then be used to solve their Riemann--Hilbert problems. The latter can then be used to answer definitively questions about mirror symmetry for this class of Calabi--Yau manifolds.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源