论文标题
具有嵌入式卷积LSTM作为骨干的自动剩余使用寿命估计框架
Automatic Remaining Useful Life Estimation Framework with Embedded Convolutional LSTM as the Backbone
论文作者
论文摘要
预测维护的一项重要任务是通过分析多元时间序列的分析对剩余有用寿命(RUL)的预测。使用滑动窗口方法,卷积神经网络(CNN)和传统的复发神经网络(RNN)方法,由于学习优化的功能的能力,对此事产生了令人印象深刻的结果。但是,序列信息仅通过CNN方法部分建模。由于常规RNN中具有更平坦的机制,例如长期记忆(LSTM),因此窗口中的时间信息无法完全保留。为了利用多级时间信息,提出了许多结合CNN和RNN模型的方法。在这项工作中,我们提出了一种新的LSTM变体,称为嵌入式卷积LSTM(ECLSTM)。在ECLSTM中,一组不同的1D卷积嵌入了LSTM结构中。通过此,时间信息在Windows之间和内部都保留。由于模型的超级参数需要仔细调整,因此我们还提出了一个基于HyperBand Optimizer的贝叶斯优化的自动预测框架,从而可以有效地优化网络体系结构。最后,我们展示了我们提出的ECLSTM方法的优越性,而不是几种广泛使用的基准数据集的最先进方法。
An essential task in predictive maintenance is the prediction of the Remaining Useful Life (RUL) through the analysis of multivariate time series. Using the sliding window method, Convolutional Neural Network (CNN) and conventional Recurrent Neural Network (RNN) approaches have produced impressive results on this matter, due to their ability to learn optimized features. However, sequence information is only partially modeled by CNN approaches. Due to the flatten mechanism in conventional RNNs, like Long Short Term Memories (LSTM), the temporal information within the window is not fully preserved. To exploit the multi-level temporal information, many approaches are proposed which combine CNN and RNN models. In this work, we propose a new LSTM variant called embedded convolutional LSTM (ECLSTM). In ECLSTM a group of different 1D convolutions is embedded into the LSTM structure. Through this, the temporal information is preserved between and within windows. Since the hyper-parameters of models require careful tuning, we also propose an automated prediction framework based on the Bayesian optimization with hyperband optimizer, which allows for efficient optimization of the network architecture. Finally, we show the superiority of our proposed ECLSTM approach over the state-of-the-art approaches on several widely used benchmark data sets for RUL Estimation.