论文标题

直接产品图的配对和上部支配不平等的紧密度

Tightness of Paired and Upper Domination Inequalities for Direct Product Graphs

论文作者

Burcroff, Amanda

论文摘要

如果每个顶点$ g $在$ d $中或与$ d $的顶点相邻,则图$ g $中的$ d $ $ d $。成对的支配数字$γ_ {\ mathrm {pr}}(g)$ g $的$是一个统治集的最小尺寸,其诱导子图的最小匹配能够完美匹配,并且上部支配数字$γ(g)$是最小统治集的最大尺寸。在本文中,我们研究了这些统治参数的两个乘法不平等的清晰度,其中图产品是直接乘积$ \ times $。 我们表明,对于每个正常数$ c $,存在图$ g $和任意大直径的$ h $,以至于$γ_ {\ mathrm {pr}}}(g \ times h)\ leqcγ_{\ mathrm {pr}}(pr}}(pr}}}(g) Paulraja和Sampath Kumar的作品。然后,我们研究这种不平等的何时以$ c = \ frac {1} {2} $,特别是证明它在$ g $和$ h $是树时都能保留。最后,我们证明了由于Brešar,Klavžar和Rall引起的不平等$γ(G \ times h)\ geqγ(g)γ(h)$很紧。

A set $D$ of vertices in a graph $G$ is called dominating if every vertex of $G$ is either in $D$ or adjacent to a vertex of $D$. The paired domination number $γ_{\mathrm{pr}}(G)$ of $G$ is the minimum size of a dominating set whose induced subgraph admits a perfect matching, and the upper domination number $Γ(G)$ is the maximum size of a minimal dominating set. In this paper, we investigate the sharpness of two multiplicative inequalities for these domination parameters, where the graph product is the direct product $\times$. We show that for every positive constant $c$, there exist graphs $G$ and $H$ of arbitrarily large diameter such that $γ_{\mathrm{pr}}(G \times H) \leq cγ_{\mathrm{pr}}(G)γ_{\mathrm{pr}}(H)$, thus answering a question of Rall as well as two questions of Paulraja and Sampath Kumar. We then study when this inequality holds with $c = \frac{1}{2}$, in particular proving that it holds whenever $G$ and $H$ are trees. Finally, we demonstrate that the inequality $Γ(G \times H) \geq Γ(G) Γ(H)$, due to Brešar, Klavžar, and Rall, is tight.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源