论文标题

通过比例危害非阴性基质分解揭示与基因簇的生存相关基因簇的低级别重组

Low-Rank Reorganization via Proportional Hazards Non-negative Matrix Factorization Unveils Survival Associated Gene Clusters

论文作者

Huang, Zhi, Salama, Paul, Shao, Wei, Zhang, Jie, Huang, Kun

论文摘要

精确健康的核心目标之一是对高维生物学数据的理解和解释,以识别与疾病启动,发育和结果相关的基因和标记。尽管已经致力于利用基因表达数据进行多个分析,同时通过包括生存时间来考虑事实的建模,但许多传统分析已分别集中在基因表达数据矩阵的非阴性矩阵分解(NMF)上,并以COX比例危害模型来进行基因表达数据矩阵和存活率回归。在这项工作中,COX比例危害回归与NMF通过施加生存约束来整合。这是通过共同优化Frobenius规范和诸如死亡或复发事件的部分对数可能性来实现的。与其他算法相比,合成数据的仿真结果证明了所提出的方法的优越性。此外,使用人类癌基因表达数据,该提出的技术可以揭开癌症基因的关键簇。发现的基因簇反映了丰富的生物学意义,并可以帮助鉴定与生存相关的生物标志物。为了实现精确健康和癌症治疗的目标,拟议的算法可以帮助理解和解释高维异质基因组学数据,并准确鉴定与生存相关的基因簇。

One of the central goals in precision health is the understanding and interpretation of high-dimensional biological data to identify genes and markers associated with disease initiation, development, and outcomes. Though significant effort has been committed to harness gene expression data for multiple analyses while accounting for time-to-event modeling by including survival times, many traditional analyses have focused separately on non-negative matrix factorization (NMF) of the gene expression data matrix and survival regression with Cox proportional hazards model. In this work, Cox proportional hazards regression is integrated with NMF by imposing survival constraints. This is accomplished by jointly optimizing the Frobenius norm and partial log likelihood for events such as death or relapse. Simulation results on synthetic data demonstrated the superiority of the proposed method, when compared to other algorithms, in finding survival associated gene clusters. In addition, using human cancer gene expression data, the proposed technique can unravel critical clusters of cancer genes. The discovered gene clusters reflect rich biological implications and can help identify survival-related biomarkers. Towards the goal of precision health and cancer treatments, the proposed algorithm can help understand and interpret high-dimensional heterogeneous genomics data with accurate identification of survival-associated gene clusters.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源