论文标题

基于雷达的动态占用网格映射和对象检测

Radar-based Dynamic Occupancy Grid Mapping and Object Detection

论文作者

Diehl, Christopher, Feicho, Eduard, Schwambach, Alexander, Dammeier, Thomas, Mares, Eric, Bertram, Torsten

论文摘要

使用传感器数据融合和对象跟踪的环境建模对于安全自动驾驶至关重要。近年来,假定静态环境的经典占用网格图方法已扩展到动态占用网格图,该图保持了低级数据融合的可能性,同时还估计了动态局部环境的位置和速度分布。本文介绍了先前方法的进一步发展。据作者所知,没有关于动态占用网格映射的出版物,而仅基于雷达数据的后续分析。因此,在这项工作中,将多个雷达传感器的数据融合在一起,并应用了基于网格的对象跟踪和映射方法。随后,动态区域的聚类提供了高级对象信息。为了进行比较,还开发了一种基于激光雷达的方法。该方法通过来自城市环境中移动车辆的实际数据进行定性和定量评估。评估说明了基于雷达的动态占用网格图的优势,考虑到不同的比较指标。

Environment modeling utilizing sensor data fusion and object tracking is crucial for safe automated driving. In recent years, the classical occupancy grid map approach, which assumes a static environment, has been extended to dynamic occupancy grid maps, which maintain the possibility of a low-level data fusion while also estimating the position and velocity distribution of the dynamic local environment. This paper presents the further development of a previous approach. To the best of the author's knowledge, there is no publication about dynamic occupancy grid mapping with subsequent analysis based only on radar data. Therefore in this work, the data of multiple radar sensors are fused, and a grid-based object tracking and mapping method is applied. Subsequently, the clustering of dynamic areas provides high-level object information. For comparison, also a lidar-based method is developed. The approach is evaluated qualitatively and quantitatively with real-world data from a moving vehicle in urban environments. The evaluation illustrates the advantages of the radar-based dynamic occupancy grid map, considering different comparison metrics.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源