论文标题
模型不确定性下的基于学习的安全稳定性驱动控制安全系统控制
Learning-Based Safety-Stability-Driven Control for Safety-Critical Systems under Model Uncertainties
论文作者
论文摘要
安全性和跟踪稳定性对于自动驾驶汽车,自动移动机器人,工业操纵器等安全性系统至关重要。为了有效地控制安全 - 关键系统以确保其安全性并实现跟踪稳定性,通常需要准确的系统动态模型。但是,实践中并不总是可以使用准确的系统模型。在本文中,提出了基于学习的安全稳定性驱动控制(LBSC)算法,以确保在模型不确定性下受到控制输入约束的非线性安全至关重要系统的安全性和跟踪稳定性。使用高斯过程(GPS)来学习名义模型和实际系统动力学之间的模型误差,并且使用模型误差的估计平均值和差异来量化高信任不确定性结合。使用这种估计的不确定性结合,设计了安全屏障约束以确保安全性,并开发出稳定性约束以实现快速而准确的跟踪。然后,提出的LBSC方法被配制为二次程序,其中包含安全性障碍,稳定性约束和控制约束。 LBSC方法的有效性在模型不确定性下的安全性关键连接巡航控制(CCC)系统模拟器上说明。
Safety and tracking stability are crucial for safety-critical systems such as self-driving cars, autonomous mobile robots, industrial manipulators. To efficiently control safety-critical systems to ensure their safety and achieve tracking stability, accurate system dynamic models are usually required. However, accurate system models are not always available in practice. In this paper, a learning-based safety-stability-driven control (LBSC) algorithm is presented to guarantee the safety and tracking stability for nonlinear safety-critical systems subject to control input constraints under model uncertainties. Gaussian Processes (GPs) are employed to learn the model error between the nominal model and the actual system dynamics, and the estimated mean and variance of the model error are used to quantify a high-confidence uncertainty bound. Using this estimated uncertainty bound, a safety barrier constraint is devised to ensure safety, and a stability constraint is developed to achieve rapid and accurate tracking. Then the proposed LBSC method is formulated as a quadratic program incorporating the safety barrier, the stability constraint, and the control constraints. The effectiveness of the LBSC method is illustrated on the safety-critical connected cruise control (CCC) system simulator under model uncertainties.