论文标题
VPC网络:从MLS点云完成3D车辆
VPC-Net: Completion of 3D Vehicles from MLS Point Clouds
论文作者
论文摘要
作为城市场景的道路环境中的动态和重要组成部分,车辆是最受欢迎的调查目标。为了监测其行为并提取其几何特征,对车辆的准确和即时测量在交通和运输场中起着至关重要的作用。从移动激光扫描(MLS)系统获得的点云提供了前所未有的细节的3D信息。事实证明,它们是智能运输和自动驾驶领域的足够数据来源,特别是用于提取车辆。但是,由于对象遮挡或自咬合,从MLS系统中获得的3D点云不可避免地不可避免。为了解决这个问题,我们提出了一个神经网络,以合成MLS数据中的车辆的完整,密集和统一的点云,称为车辆点完成网络(VPC-NET)。在此网络中,我们引入了一个新的编码器模块,以从输入实例中提取全局功能,该功能由空间变压器网络和点功能增强层组成。此外,还提出了一个新的炼油厂模块,以保留输入中的车辆详细信息,并使用细粒度的信息来完整输出。给定稀疏和部分点云作为输入,网络可以生成完整而逼真的车辆结构,并将部分输入中的细节保持细粒度。我们使用合成数据集评估了不同实验中提出的VPC-NET,并将结果应用于3D车辆监视任务。定量和定性实验证明了拟议的VPC-NET的有希望的性能,并显示了最新的结果。
As a dynamic and essential component in the road environment of urban scenarios, vehicles are the most popular investigation targets. To monitor their behavior and extract their geometric characteristics, an accurate and instant measurement of vehicles plays a vital role in traffic and transportation fields. Point clouds acquired from the mobile laser scanning (MLS) system deliver 3D information of road scenes with unprecedented detail. They have proven to be an adequate data source in the fields of intelligent transportation and autonomous driving, especially for extracting vehicles. However, acquired 3D point clouds of vehicles from MLS systems are inevitably incomplete due to object occlusion or self-occlusion. To tackle this problem, we proposed a neural network to synthesize complete, dense, and uniform point clouds for vehicles from MLS data, named Vehicle Points Completion-Net (VPC-Net). In this network, we introduce a new encoder module to extract global features from the input instance, consisting of a spatial transformer network and point feature enhancement layer. Moreover, a new refiner module is also presented to preserve the vehicle details from inputs and refine the complete outputs with fine-grained information. Given sparse and partial point clouds as inputs, the network can generate complete and realistic vehicle structures and keep the fine-grained details from the partial inputs. We evaluated the proposed VPC-Net in different experiments using synthetic and real-scan datasets and applied the results to 3D vehicle monitoring tasks. Quantitative and qualitative experiments demonstrate the promising performance of the proposed VPC-Net and show state-of-the-art results.