论文标题
量子校正到量子极端表面处方
Leading order corrections to the quantum extremal surface prescription
论文作者
论文摘要
我们表明,量子极端表面(QES)处方的幼稚应用可能会导致矛盾的结果,并且必须在领先顺序下进行校正。当有第二个QE(在领先顺序上比最小QE的严格广义熵)以及两个表面之间的大量高度不可压缩的体积熵时,会出现校正。我们将校正的来源追溯到QES处方的复制技巧推导中使用的假设的失败,并证明更谨慎的推导正确地计算了校正。使用一声量子香农理论(平滑的最小和最大 - 凝管)中的工具,我们将这些结果推广到确定QES处方是否成立的一组精制条件。我们发现与纠缠楔重建(EWR)所需的条件相似,并展示如何将EWR重新解释为一击量子状态合并的任务(使用零位而不是经典位),任务重力能够在最佳方面有效地实现。
We show that a naïve application of the quantum extremal surface (QES) prescription can lead to paradoxical results and must be corrected at leading order. The corrections arise when there is a second QES (with strictly larger generalized entropy at leading order than the minimal QES), together with a large amount of highly incompressible bulk entropy between the two surfaces. We trace the source of the corrections to a failure of the assumptions used in the replica trick derivation of the QES prescription, and show that a more careful derivation correctly computes the corrections. Using tools from one-shot quantum Shannon theory (smooth min- and max-entropies), we generalize these results to a set of refined conditions that determine whether the QES prescription holds. We find similar refinements to the conditions needed for entanglement wedge reconstruction (EWR), and show how EWR can be reinterpreted as the task of one-shot quantum state merging (using zero-bits rather than classical bits), a task gravity is able to achieve optimally efficiently.