论文标题

观察与第二和第三代重力波检测器网络的偏心二进制黑洞合并

Observation of eccentric binary black hole mergers with second and third generation gravitational wave detector networks

论文作者

Chen, Zhuo, Huerta, E. A., Adamo, Joseph, Haas, Roland, O'Shea, Eamonn, Kumar, Prayush, Moore, Chris

论文摘要

[删节]我们引入了偏心,非旋转,灵感 - 高斯 - 加斯过程合并近似(Enigma)波形模型的改进版本。我们发现,这种现成的模型可以:(i)在选择$ m _ {\ {1,\,2 \}} \ in [5m _ {\ odot},\,\,\,50m _ {\ odot}] $ paramite Ant and Brinion; (ii)从初始重力波频率$ f _ {\ textrm {gw}} = 15 \,\ textrm {hz} $中产生波形,从初始引力波频率$ f _ {\ textrm {\ textrm {\ textrm {gw}} = 15 \,示例速率为8192 Hz; (iii)复制准圆合并的物理。 We utilize ENIGMA to compute the expected signal-to-noise ratio (SNR) distributions of eccentric binary black hole mergers assuming the existence of second and third generation gravitational wave detector networks that include the twin LIGO detectors, Virgo, KAGRA, LIG​​O-India, a LIGO-type detector in Australia, Cosmic Explorer, and the Einstein Telescope.在先进的ligo型检测器的背景下,我们发现,对于具有$ e_0 \ e_0 \ leq0.4 $ at $ f _ {\ f _ {\ textrm {gw}} = 10 \ 10 \,\ textrm {hz fextrm {hz f的Quas的系统,偏心合并的SNR总是比准圆圈合并大于准圆圈合并。总质量和质量比相同的系统。对于宇宙探索器型检测器网络,我们发现偏心合并的SNR与$ e_0 \ e_0 \ leq0.3 $ at $ f _ {\ textrm {gw}} = 10 \,\ textrm {hz} $相似。 $ e_0 \ sim0.5 $ at $ f _ {\ textrm {\ textrm {gw}} = 10 \,\ textrm {hz} $具有SNR的系统,即使这些偏心信号是quasicectric信号,snrs的范围为50%-90%-90%的snR,即使这些偏心信号是第三到第三级的quas ciorc。对于爱因斯坦望远镜型探测器,我们发现偏心合并的SNR与$ e_0 \ leq0.4 $ at $ f _ {\ textrm {gw}} = 5 \,\ textrm {hz} $的SNR相似。

[Abridged] We introduce an improved version of the Eccentric, Non-spinning, Inspiral-Gaussian-process Merger Approximant (ENIGMA) waveform model. We find that this ready-to-use model can: (i) produce physically consistent signals when sampling over 1M samples chosen over the $m_{\{1,\,2\}}\in[5M_{\odot},\,50M_{\odot}]$ parameter space, and the entire range of binary inclination angles; (ii) produce waveforms within 0.04 seconds from an initial gravitational wave frequency $f_{\textrm{GW}} =15\,\textrm{Hz}$ and at a sample rate of 8192 Hz; and (iii) reproduce the physics of quasi-circular mergers. We utilize ENIGMA to compute the expected signal-to-noise ratio (SNR) distributions of eccentric binary black hole mergers assuming the existence of second and third generation gravitational wave detector networks that include the twin LIGO detectors, Virgo, KAGRA, LIGO-India, a LIGO-type detector in Australia, Cosmic Explorer, and the Einstein Telescope. In the context of advanced LIGO-type detectors, we find that the SNR of eccentric mergers is always larger than quasi-circular mergers for systems with $e_0\leq0.4$ at $f_{\textrm{GW}} =10\,\textrm{Hz}$, even if the timespan of eccentric signals is just a third of quasi-circular systems with identical total mass and mass-ratio. For Cosmic Explorer-type detector networks, we find that eccentric mergers have similar SNRs than quasi-circular systems for $e_0\leq0.3$ at $f_{\textrm{GW}} =10\,\textrm{Hz}$. Systems with $e_0\sim0.5$ at $f_{\textrm{GW}} =10\,\textrm{Hz}$ have SNRs that range between 50%-90% of the SNR produced by quasi-circular mergers, even if these eccentric signals are just between a third to a tenth the length of quasi-circular systems. For Einstein Telescope-type detectors, we find that eccentric mergers have similar SNRs than quasi-circular systems for $e_0\leq0.4$ at $f_{\textrm{GW}} =5\,\textrm{Hz}$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源