论文标题
使用深度学习的GW150914的完整参数推断
Complete parameter inference for GW150914 using deep learning
论文作者
论文摘要
在过去的五年中,Ligo和处女座重力波观测值发现了许多令人兴奋的事件。随着检测速率随检测器灵敏度的增长,这对数据分析构成了日益增长的计算挑战。考虑到这一点,在这项工作中,我们采用深度学习技术来对引力波进行快速无可能的贝叶斯推断。我们在二进制黑洞系统参数的整个15维空间上训练神经网络条件密度估计器,以模拟后验概率分布,从而给定来自多个检测器的检测器应变数据。我们使用归一化流的方法---特别是神经样条归一流的流动 - - 允许快速采样和密度估计。培训网络是无可能的,需要数据生成过程中的样本,但没有可能评估。通过培训,该网络将学习一组全球的后代:它可以每秒生成数千个独立的后验样本,以符合与训练的先前和检测器噪声特征一致的任何应变数据。通过使用GW150914时估计的检测器噪声功率频谱密度训练,并根据事件应变数据进行调节,我们使用神经网络来生成与使用常规抽样技术分析的准确后样品。
The LIGO and Virgo gravitational-wave observatories have detected many exciting events over the past five years. As the rate of detections grows with detector sensitivity, this poses a growing computational challenge for data analysis. With this in mind, in this work we apply deep learning techniques to perform fast likelihood-free Bayesian inference for gravitational waves. We train a neural-network conditional density estimator to model posterior probability distributions over the full 15-dimensional space of binary black hole system parameters, given detector strain data from multiple detectors. We use the method of normalizing flows---specifically, a neural spline normalizing flow---which allows for rapid sampling and density estimation. Training the network is likelihood-free, requiring samples from the data generative process, but no likelihood evaluations. Through training, the network learns a global set of posteriors: it can generate thousands of independent posterior samples per second for any strain data consistent with the prior and detector noise characteristics used for training. By training with the detector noise power spectral density estimated at the time of GW150914, and conditioning on the event strain data, we use the neural network to generate accurate posterior samples consistent with analyses using conventional sampling techniques.