论文标题

自由能原理下的神经和表型代表

Neural and phenotypic representation under the free-energy principle

论文作者

Ramstead, Maxwell J. D., Hesp, Casper, Tschantz, Alec, Smith, Ryan, Constant, Axel, Friston, Karl

论文摘要

本文的目的是利用自由能原则及其推论理论,即积极推论,以发展生物的代表性能力的通用,可普遍的模型;也就是说,表型表示理论。鉴于它们的普遍性,我们关注的是分布式表示形式(例如,人口代码),从而代表了生活组织中整体活动的模式来代表感觉输入或数据的原因。主动推理框架在马尔可夫毛毯形式主义上,这使我们能够将感兴趣的系统(例如生物系统,内部状态,外部状态)和毯子(主动和感觉)划分为使内部和外部状态彼此独立。在此框架中,生物的代表能力是由于其马尔可夫结构和非平衡动力学而出现的,这些动态既需要双重信息的几何形状。这需要适度的表示能力:内部状态具有固有的信息几何形状,该几何形状描述了其随时间在状态空间中的轨迹,以及允许内部状态对(虚构)外部状态的概率信念进行编码的外部信息几何形状。在此基础上,我们在这里描述了如何以自动和紧急的方式,有关刺激的信息可以由马尔可夫毯子束缚的神经元组编码;所谓的神经元数据包假设。作为这种紧急表示形式的具体演示,我们提出了数值模拟,表明共享合适类型的概率生成模型的主动推理剂的自组织合奏能够编码有关刺激阵列的可恢复信息。

The aim of this paper is to leverage the free-energy principle and its corollary process theory, active inference, to develop a generic, generalizable model of the representational capacities of living creatures; that is, a theory of phenotypic representation. Given their ubiquity, we are concerned with distributed forms of representation (e.g., population codes), whereby patterns of ensemble activity in living tissue come to represent the causes of sensory input or data. The active inference framework rests on the Markov blanket formalism, which allows us to partition systems of interest, such as biological systems, into internal states, external states, and the blanket (active and sensory) states that render internal and external states conditionally independent of each other. In this framework, the representational capacity of living creatures emerges as a consequence of their Markovian structure and nonequilibrium dynamics, which together entail a dual-aspect information geometry. This entails a modest representational capacity: internal states have an intrinsic information geometry that describes their trajectory over time in state space, as well as an extrinsic information geometry that allows internal states to encode (the parameters of) probabilistic beliefs about (fictive) external states. Building on this, we describe here how, in an automatic and emergent manner, information about stimuli can come to be encoded by groups of neurons bound by a Markov blanket; what is known as the neuronal packet hypothesis. As a concrete demonstration of this type of emergent representation, we present numerical simulations showing that self-organizing ensembles of active inference agents sharing the right kind of probabilistic generative model are able to encode recoverable information about a stimulus array.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源