论文标题
在戴森系列的洛伦兹 - 与衍生耦合的理论中
On the Lorentz-invariance of the Dyson series in theories with derivative couplings
论文作者
论文摘要
当交互取决于字段的衍生物时,我们在dyson系列上推测dyson系列。我们坚持两个特定的例子:标量电动力学和重新归一化的$ ϕ^4 $理论。我们最终提供证据表明洛伦兹不变性得到了满足,并且通常可以将Feynman规则应用于Lagrangian的互动。
We speculate on Dyson series for the $S$-matrix when the interaction depends on derivatives of the fields. We stick on two particular examples: the scalar electrodynamics and the renormalised $ϕ^4$ theory. We eventually give evidence that Lorentz invariance is satisfied and that usual Feynman rules can be applied to the interaction Lagrangian.