论文标题
关于Schrödinger运营商非区域收敛的注释
A Note on Non-tangential Convergence for Schrödinger Operators
论文作者
论文摘要
该注释的目的是在有限的曲线上为Schrödinger操作员建立非区域收敛结果。我们考虑这种方法区域的维度与最初数据的规律性之间的关系,这意味着收敛。结果,我们获得了$ p $的上限,以使schrödinger最大函数始于$ h^{s}(\ m athbb {r}^{n})$到$ l^{p}(\ m athbb {r}
The goal of this note is to establish non-tangential convergence results for Schrödinger operators along restricted curves. We consider the relationship between the dimension of this kind of approach region and the regularity for the initial data which implies convergence. As a consequence, we obtain a upper bound for $p$ such that the Schrödinger maximal function is bounded from $H^{s}(\mathbb{R}^{n})$ to $L^{p}(\mathbb{R}^{n})$ for any $s > \frac{n}{2(n+1)}$.