论文标题

分形高斯网络:基于高斯乘法混乱的稀疏随机图模型

Fractal Gaussian Networks: A sparse random graph model based on Gaussian Multiplicative Chaos

论文作者

Ghosh, Subhroshekhar, Balasubramanian, Krishnakumar, Yang, Xiaochuan

论文摘要

我们提出了一种新型的随机网络模型,称为分形高斯网络(FGN),该模型体现了定义明确且可分析的分形结构。这种分形结构已在各种应用中经验观察到。 FGNS在流行的纯粹随机几何图(又称泊松布尔网络)和具有分形行为越来越多的随机图之间连续插值。实际上,它们形成了一个稀疏随机几何图的参数家族,该家族由控制分形结构强度的分形参数参数。 FGN是由高斯乘法混乱(GMC)的潜在空间几何形状驱动的,这是一种本身分形的规范模型。我们渐近地表征了FGN中预期的边,三角形,三角形和轮毂和辐条基序的预期数量,并使用网络的大小参数揭示了它们的缩放模式。然后,我们研究了基于观察到的网络数据的分形的存在以及参数估计问题的自然问题,除了FGN作为随机图模型的基本属性外。我们还通过在FGN的环境中揭示了自然随机块模型来探索社区结构中的分形。最后,我们通过对网络中分类性科学文献的现象学分析来证实我们的结果,包括对现实世界大规模网络数据的应用。

We propose a novel stochastic network model, called Fractal Gaussian Network (FGN), that embodies well-defined and analytically tractable fractal structures. Such fractal structures have been empirically observed in diverse applications. FGNs interpolate continuously between the popular purely random geometric graphs (a.k.a. the Poisson Boolean network), and random graphs with increasingly fractal behavior. In fact, they form a parametric family of sparse random geometric graphs that are parametrized by a fractality parameter which governs the strength of the fractal structure. FGNs are driven by the latent spatial geometry of Gaussian Multiplicative Chaos (GMC), a canonical model of fractality in its own right. We asymptotically characterize the expected number of edges, triangles, cliques and hub-and-spoke motifs in FGNs, unveiling a distinct pattern in their scaling with the size parameter of the network. We then examine the natural question of detecting the presence of fractality and the problem of parameter estimation based on observed network data, in addition to fundamental properties of the FGN as a random graph model. We also explore fractality in community structures by unveiling a natural stochastic block model in the setting of FGNs. Finally, we substantiate our results with phenomenological analysis of the FGN in the context of available scientific literature for fractality in networks, including applications to real-world massive network data.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源