论文标题
$ {\ it ab \ initio} $模拟拓扑超导体中非阿布莱辫子统计的模拟
${\it Ab \ Initio}$ Simulation of Non-Abelian Braiding Statistics in Topological Superconductors
论文作者
论文摘要
我们在数值上研究了二维拓扑超导体中涡旋的非阿布尔编织动力学,例如带有Rashba Spin-Orbit耦合的$ S $波超导体。由涡流托管的Majorana零模式(MZM)构成了拓扑量子,它提供了拓扑量子计算的基本组成部分。但是,由于MZM受$ \ Mathbb {Z} _2 $不变的保护,但是,Majorana Qubit和Quantum Gate操作可能对由Quasiparticle干扰引起的固有变质敏感。在数值上模拟时间依赖性的bogoliubov-de Gennes方程,而不假设MZM的存在$ {\ it a \ priori} $,我们检查了由于与邻近MZMS和其他Quasiparticles and Quasiparticles和其他Quasiparticles的相互作用而引起的非亚伯辫子动力学的量子噪声。我们证明,在两个涡流的互换互换之后,最低的涡旋结合状态会积累几何相$π/2 $,而动态阶段引起的误差却忽略不计,而与MZMS相互作用无关。此外,我们在数值上模拟了二维拓扑超导体中四个涡旋的编织动力学,并讨论了一种最佳的编织条件,以实现非亚洲统计数据的高性能和基于Majorana Qubits的量子的高性能。
We numerically investigate non-Abelian braiding dynamics of vortices in two-dimensional topological superconductors, such as $s$-wave superconductors with Rashba spin-orbit coupling. Majorana zero modes (MZMs) hosted by the vortices constitute a topological qubit, which offers a fundamental building block of topological quantum computation. As the MZMs are protected by $\mathbb{Z}_2$ invariant, however, the Majorana qubit and quantum gate operations may be sensitive to intrinsic decoherence caused by quasiparticle interference. Numerically simulating the time-dependent Bogoliubov-de Gennes equation without assuming ${\it a \ priori}$ existence of MZMs, we examine quantum noises on the unitary operators of non-abelian braiding dynamics due to interactions with neighboring MZMs and other quasiparticle states. We demonstrate that after the interchange of two vortices, the lowest vortex-bound states accumulate the geometric phase $π/2$, and errors stemming from dynamical phases are negligibly small, irrespective of interactions of MZMs. Furthermore, we numerically simulate the braiding dynamics of four vortices in two-dimensional topological superconductors, and discuss an optimal braiding condition for realizing the high performance of non-Abelian statistics and quantum gates operations of Majorana-based qubits.