论文标题

在复杂的谎言代数的区域化中

On a quarternification of complex Lie algebras

论文作者

Tosiaki, Kori

论文摘要

我们给出了季节谎言代数的定义和复杂的谎言代数的四方面化。根据我们的定义,gl(n,h),sl(n,h),so*(2n)和sp(n)分别是gl(n,c),sl(n,c),so(n,c)和u(n,c)和u(n)的四方面。然后,我们将证明一个简单的谎言代数承认了区域化。为了证明,由于Harich-Chandra,Chevalley和Serre,我们遵循众所周知的论点,从其相应的根系中构建了简单的谎言代数。将给出该区域谎言代数的根空间分解。基本根的每个根空间都是复杂的二维。

We give a definition of quarternion Lie algebra and of the quarternification of a complex Lie algebra. By our definition gl(n,H), sl(n,H), so*(2n) and sp(n) are quarternifications of gl(n,C), sl(n,C), so(n,C) and u(n) respectively. Then we shall prove that a simple Lie algebra admits the quarternification. For the proof we follow the well known argument due to Harich-Chandra, Chevalley and Serre to construct the simple Lie algebra from its corresponding root system. The root space decomposition of this quarternion Lie algebra will be given. Each root space of a fundamental root is complex 2-dimensional.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源