论文标题

评估跨语言的婴儿语音学习的计算模型

Evaluating computational models of infant phonetic learning across languages

论文作者

Matusevych, Yevgen, Schatz, Thomas, Kamper, Herman, Feldman, Naomi H., Goldwater, Sharon

论文摘要

在生命的第一年,婴儿的言语感知与他们的母语的声音相似。存在许多关于这种早期语音学习的说明,但是从他们听到的语音输入中,婴儿在所听到的语音输入中预测了在婴儿中观察到的调整模式。最近的一项研究介绍了第一个这样的模型,该模型借鉴了为从自然主义语音中学习而提出的算法,并在单个电话对比度上对其进行了测试。在这里,我们研究了五种此类算法,这些算法是其潜在的认知相关性。我们使用每种算法模拟语音学习,并对来自不同语言的三个手机对比进行测试,将结果与婴儿的歧视模式进行比较。这五个模型与经验观察表现出不同程度的一致性,表明我们的方法可以帮助在早期语音学习的候选机制之间做出决定,并提供有关模型的哪些方面对于捕获婴儿的感知发展至关重要的。

In the first year of life, infants' speech perception becomes attuned to the sounds of their native language. Many accounts of this early phonetic learning exist, but computational models predicting the attunement patterns observed in infants from the speech input they hear have been lacking. A recent study presented the first such model, drawing on algorithms proposed for unsupervised learning from naturalistic speech, and tested it on a single phone contrast. Here we study five such algorithms, selected for their potential cognitive relevance. We simulate phonetic learning with each algorithm and perform tests on three phone contrasts from different languages, comparing the results to infants' discrimination patterns. The five models display varying degrees of agreement with empirical observations, showing that our approach can help decide between candidate mechanisms for early phonetic learning, and providing insight into which aspects of the models are critical for capturing infants' perceptual development.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源