论文标题

有效的多尺度算法,用于模拟金属纳米结构阵列的非本地光学响应

Efficient multiscale algorithms for simulating nonlocal optical response of metallic nanostructure arrays

论文作者

Zhang, Yongwei, Ma, Chupeng, Cao, Liqun, Shi, DongYang

论文摘要

在本文中,我们考虑了介电宿主内金属纳米结构阵列的非本地光学响应的​​数值模拟,这是纳米质子群社区特别感兴趣的,这是由于许多不寻常的属性和潜在的应用。从数学上讲,它是由Maxwell的方程式描述的,具有不连续系数以及仅在金属纳米结构域上定义的一组Helmholtz-Type方程。为了解决这个具有挑战性的问题,我们开发了一种由三个步骤组成的高效多尺度方法。首先,我们以新颖的方式将系统扩展到介电介质占据的域中,并导致具有快速振荡系数的耦合系统。对原始系统和扩展系统的解决方案之间的误差进行了严格的分析。其次,我们通过使用多尺度渐近方法来得出均质系统,并定义扩展系统的多尺度近似解决方案。第三,为了固定金属纳米结构内的多尺度渐近方法的不准确性,我们将在每个金属纳米结构中分别求解原始系统,并使用由多尺度近似解决方案给出的边界条件。提出了一种基于$ LU $分解的快速算法,以解决所得的线性系统。通过应用多尺度方法,我们获得了与通过直接以低得多的计算成本求解原始系统获得的结果相吻合的结果。提供数值示例以验证所提出方法的效率和准确性。

In this paper, we consider numerical simulations of the nonlocal optical response of metallic nanostructure arrays inside a dielectric host, which is of particular interest to the nanoplasmonics community due to many unusual properties and potential applications. Mathematically, it is described by Maxwell's equations with discontinuous coefficients coupled with a set of Helmholtz-type equations defined only on the domains of metallic nanostructures. To solve this challenging problem, we develop an efficient multiscale method consisting of three steps. First, we extend the system into the domain occupied by the dielectric medium in a novel way and result in a coupled system with rapidly oscillating coefficients. A rigorous analysis of the error between the solutions of the original system and the extended system is given. Second, we derive the homogenized system and define the multiscale approximate solution for the extended system by using the multiscale asymptotic method. Third, to fix the inaccuracy of the multiscale asymptotic method inside the metallic nanostructures, we solve the original system in each metallic nanostructure separately with boundary conditions given by the multiscale approximate solution. A fast algorithm based on the $LU$ decomposition is proposed for solving the resulting linear systems. By applying the multiscale method, we obtain the results that are in good agreement with those obtained by solving the original system directly at a much lower computational cost. Numerical examples are provided to validate the efficiency and accuracy of the proposed method.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源