论文标题

正则表达模式匹配和成员资格的细粒度复杂性

Fine-Grained Complexity of Regular Expression Pattern Matching and Membership

论文作者

Schepper, Philipp

论文摘要

正则表达模式匹配和成员资格的当前最快算法将经典的O(NM)时间算法提高了大约log^{3/2} n。我们没有专注于一般模式,而是分析了这项工作中有界深度的均匀模式。对于他们来说,已知的分类将类型分类为轻松(强烈的次级)和硬(在塞思下基本上是二次时间)。我们对此分类的硬模式类型进行了非常细粒度的观察,并显示了二分法:很少类型允许超多种物质改进,而其他模式类型的算法只能通过恒定数量的对数因子(假设公式-SAT假设假设)来改进。

The currently fastest algorithm for regular expression pattern matching and membership improves the classical O(nm) time algorithm by a factor of about log^{3/2}n. Instead of focussing on general patterns we analyse homogeneous patterns of bounded depth in this work. For them a classification splitting the types in easy (strongly sub-quadratic) and hard (essentially quadratic time under SETH) is known. We take a very fine-grained look at the hard pattern types from this classification and show a dichotomy: few types allow super-poly-logarithmic improvements while the algorithms for the other pattern types can only be improved by a constant number of log-factors, assuming the Formula-SAT Hypothesis.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源