论文标题

自动流量分析的新方向

New Directions in Automated Traffic Analysis

论文作者

Holland, Jordan, Schmitt, Paul, Feamster, Nick, Mittal, Prateek

论文摘要

尽管将机器学习用于许多网络流量分析任务,从应用程序识别到入侵检测,但机器学习管道的各个方面最终决定了模型的性能 - 功能选择和表示,模型选择和参数调整 - 仍然是手动和艰苦的。本文提出了一种自动化流量分析的许多方面的方法,从而更容易地将机器学习技术应用于更广泛的流量分析任务。我们介绍了NPRINT,该工具生成了一个统一的数据包表示,该表示可以适合表示表示和模型培训。我们将NPRINT与自动化机器学习(AUTOML)集成在一起,从而导致NPRINTML,这是一个公共系统,在很大程度上消除了特征提取和模型调整,以实现各种流量分析任务。我们已经在八个单独的流量分析任务上评估了NPRINTML,并发布了NPRINT和NPRINTML,以使未来的工作扩展这些方法。

Despite the use of machine learning for many network traffic analysis tasks in security, from application identification to intrusion detection, the aspects of the machine learning pipeline that ultimately determine the performance of the model -- feature selection and representation, model selection, and parameter tuning -- remain manual and painstaking. This paper presents a method to automate many aspects of traffic analysis, making it easier to apply machine learning techniques to a wider variety of traffic analysis tasks. We introduce nPrint, a tool that generates a unified packet representation that is amenable for representation learning and model training. We integrate nPrint with automated machine learning (AutoML), resulting in nPrintML, a public system that largely eliminates feature extraction and model tuning for a wide variety of traffic analysis tasks. We have evaluated nPrintML on eight separate traffic analysis tasks and released nPrint and nPrintML to enable future work to extend these methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源