论文标题
在低温冷却的微型机械膜上挤压光线干涉法
Squeezed-light interferometry on a cryogenically-cooled micro-mechanical membrane
论文作者
论文摘要
挤压的光状态减少了信号范围的光子计数测量噪声,而无需增加光功率,并能够对光和物质混合系统中的量子纠缠进行基本研究。此外,用冷却冷却的挤压状态的完成具有很高的潜力。首先,测量灵敏度通常受量子噪声和热噪声的限制。其次,挤压状态可以减少冷却设备上的热负载,而不会丢失测量精度。在这里,我们演示了冷却微型机械膜的挤压光位置感测。在光子计数噪声低于光子计数的噪声下,感应精度可提高高达4.8 dB,受到两个法拉第旋转器的光损失,在约20K的膜温度下,受我们的冷冻冷却器的限制。我们证明,在低温米歇尔森干涉仪中意识到高干扰对比是可行的。我们的设置是针对所设想的欧洲重力波检测器“爱因斯坦望远镜”的首次概念演示,该望远镜计划使用挤压状态,以及其镜子测试群体的冷却。
Squeezed states of light reduce the signal-normalized photon counting noise of measurements without increasing the light power and enable fundamental research on quantum entanglement in hybrid systems of light and matter. Furthermore, the completion of squeezed states with cryo-cooling has high potential. First, measurement sensitivities are usually limited by quantum noise and thermal noise. Second, squeezed states allow for reducing the heat load on cooled devices without losing measurement precision. Here, we demonstrate squeezed-light position sensing of a cryo-cooled micro-mechanical membrane. The sensing precision is improved by up to 4.8 dB below photon counting noise, limited by optical loss in two Faraday rotators, at a membrane temperature of about 20K, limited by our cryo-cooler. We prove that realising a high interference contrast in a cryogenic Michelson interferometer is feasible. Our setup is the first conceptual demonstration towards the envisioned European gravitational-wave detector, the 'Einstein Telescope', which is planned to use squeezed states of light together with cryo-cooling of its mirror test masses.