论文标题

优化面料

Optimization Fabrics

论文作者

Ratliff, Nathan D., Van Wyk, Karl, Xie, Mandy, Li, Anqi, Rana, Muhammad Asif

论文摘要

本文提出了一种优化织物的理论,二阶微分方程,该方程在空间上编码名义行为,可用于定义平滑优化器的行为。优化面料可以在反映空间本身结构的优化问题之间编码共同点,即使在优化简单的幼稚潜在功能时,也可以使平稳的优化过程智能导航每个问题。重要的是,对织物的优化本质上是渐近稳定的。本文的大部分都是致力于开发用于设计和使用的工具,用于设计和使用一类称为几何面料的织物。几何织物将行为编码为一般非线性几何形状,它们是具有特殊同质性属性的协变二阶微分方程,可确保其行为独立于通过介质的系统的速度。一类Finsler Lagrangian Energies可以用来定义这些非线性几何形状如何相互结合,以及当潜在功能迫使它们从名义路径上迫使它们反应。此外,这些几何织物在转换树上的回调和组合的标准操作下关闭。对于行为表示,在机器人运动生成的背景下,这类几何织物构成了一类广泛的光谱半规划(SPEC),也称为Riemannian运动策略(RMP),既捕获了加速度策略和优先指标的直观分离,又捕获了对模块化设计和内在稳定的稳定的直观分离。因此,几何面料是安全且易于使用的行为设计师更容易使用的。也讨论了该理论在学习中的政策表示和概括中的应用。

This paper presents a theory of optimization fabrics, second-order differential equations that encode nominal behaviors on a space and can be used to define the behavior of a smooth optimizer. Optimization fabrics can encode commonalities among optimization problems that reflect the structure of the space itself, enabling smooth optimization processes to intelligently navigate each problem even when optimizing simple naive potential functions. Importantly, optimization over a fabric is inherently asymptotically stable. The majority of this paper is dedicated to the development of a tool set for the design and use of a broad class of fabrics called geometric fabrics. Geometric fabrics encode behavior as general nonlinear geometries which are covariant second-order differential equations with a special homogeneity property that ensures their behavior is independent of the system's speed through the medium. A class of Finsler Lagrangian energies can be used to both define how these nonlinear geometries combine with one another and how they react when potential functions force them from their nominal paths. Furthermore, these geometric fabrics are closed under the standard operations of pullback and combination on a transform tree. For behavior representation, this class of geometric fabrics constitutes a broad class of spectral semi-sprays (specs), also known as Riemannian Motion Policies (RMPs) in the context of robotic motion generation, that captures both the intuitive separation between acceleration policy and priority metric critical for modular design and are inherently stable. Therefore, geometric fabrics are safe and easier to use by less experienced behavioral designers. Application of this theory to policy representation and generalization in learning are discussed as well.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源