论文标题
全态泊松田理论
Holomorphic Poisson Field Theories
论文作者
论文摘要
我们根据基础时空的一部分植物泊松结构的数据构建一类量子场理论。主要的技术工具依赖于此类理论的变形和异常的表征,从正式的汉密尔顿载体领域的Gelfand-Fuchs共同体方面。在泊松结构是非分类的情况下,这种理论在某种弱的意义上是拓扑的,我们称为“ de rham拓扑”。虽然翻译的谎言代数以同在琐碎的方式起作用,但我们将表明,这种理论的观察到的空间并不能定义e_n-algebra。此外,我们将在四个和五个方面强调与超级实力理论的猜想。
We construct a class of quantum field theories depending on the data of a holomorphic Poisson structure on a piece of the underlying spacetime. The main technical tool relies on a characterization of deformations and anomalies of such theories in terms of the Gelfand-Fuchs cohomology of formal Hamiltonian vector fields. In the case that the Poisson structure is non-degenerate such theories are topological in a certain weak sense, which we refer to as "de Rham topological". While the Lie algebra of translations acts in a homotopically trivial way, we will show that the space of observables of such a theory does not define an E_n-algebra. Additionally, we will highlight a conjectural relationship to theories of supergravity in four and five dimensions.