论文标题
NGC 5055中的极端极度X射线源X-1
An extreme Ultraluminous X-ray source X-1 in NGC 5055
论文作者
论文摘要
目标。我们分析了超湿X射线源(ULX)NGC 5055 X-1的多上述X射线数据,其发光度高达$ 2.32 \ times10^{40} \ rm erg \ rm erg \ s^{ - 1} $,以限制源的物理参数。方法。我们对Chandra和XMM-Newton观测进行了定时和光谱分析。我们使用的光谱模型假设发射来自积聚黑洞系统。我们使用多色磁盘(MCD)与PowerLaw(PL)或热综合(NTHCOMP)组件结合使用数据,并将这些拟合与纤细磁盘模型进行了比较。结果。来源的光弯曲没有显示出显着的可变性。从硬度比(3-10 keV/0.3-3 keV磁通)中,我们推断出源不是频谱变化。我们发现,光子指数与未吸收的0.3-10 keV通量和氢柱密度紧密相关。此外,温度发射率特征表明与标准子埃丁顿薄磁盘模型有偏差。在所有拟合模型中,源显示亮度与内盘温度之间的逆相关性。结论。我们的分析有利于源具有超柔软状态的来源。光子指数与通量之间的正相关,以及光子指数与氢柱密度之间的正相关可能表明该源在高爱丁顿的比率下积聚,并且可能表明存在风。对于所有光谱模型,与内磁盘温度的逆亮度关系可能表明发射是通过光学较厚的流出的几何光束。
Aims. We analyzed multi-epoch X-ray data of the Ultraluminous X-ray source (ULX) NGC 5055 X-1, with luminosity up to $2.32\times10^{40}\ \rm erg\ s^{-1}$, in order to constrain the physical parameters of the source. Methods. We performed timing and spectral analysis of Chandra and XMM-Newton observations. We used spectral models which assume the emission is from an accreting black hole system. We fit the data with a multicolor disk (MCD) combined with a powerlaw (PL) or a thermal Comptonization (NTHCOMP) component, and compared those fits with a slim disk model. Results. The lightcurves of the source do not show significant variability. From the hardness ratios (3-10 keV/0.3-3 keV flux) we infer that the source is not spectrally variable. We found that the photon index is tightly, positively correlated with the unabsorbed 0.3-10 keV flux and the hydrogen column density. Furthermore, the temperature emissivity profile indicates a deviation from the standard sub-Eddington thin disk model. The source shows an inverse correlation between luminosity and inner disk temperature in all fitted models. Conclusions. Our analysis favors the source to be in an ultraluminous soft state. The positive correlations between the photon index and the flux, and between the photon index and the hydrogen column density may suggest the source is accreting at high Eddington ratios and might indicate the presence of a wind. The inverse luminosity relation with the inner disk temperature for all spectral models may indicate that the emission is geometrically beamed by an optically thick outflow.