论文标题
MEG-TO-MRI核心分配的质量评估
Quality assessment of MEG-to-MRI coregistrations
论文作者
论文摘要
对于磁脑摄影(MEG)或脑电图数据的源重建精度,必须高精度的源和传感器核心批准。通常,源空间来自磁共振成像(MRI)。但是,在大多数情况下,对于传感器到MRI核心的核心分配没有质量评估。如果有的话,通常提供了点残差的根平均正方形(RMS)。但是,已经表明,残留物的RMS与核心任务错误无关。我们建议使用目标注册误差(TRE)作为传感器到MRI核心质量质量的标准。 TRE在各个兴趣点衡量不确定性在核心分配中的影响。总共分析了单个MEG实验室的5544个带有传感器到头的数据集和128个前往MRI的核心投票。使用自适应大都市算法来估计最佳核心委托并采样核心委员会参数(旋转和翻译)。我们在头表面发现平均TRE在1.3至2.3mm之间。此外,我们观察到大都市和迭代的最接近点算法之间的核约为参数的平均绝对差异为(1.9 $ \ pm $ 1.5)°和(1.1 $ \ pm $ 0.9)mm。配对样品t检验表明,使用大都市算法可以显着最小化目标函数。采样参数允许在MRI体积的整个网格上计算TRE。因此,我们建议大都会算法从头到头核心。
For high precision in source reconstruction of magnetoencephalography (MEG) or electroencephalography data, high accuracy of the coregistration of sources and sensors is mandatory. Usually, the source space is derived from magnetic resonance imaging (MRI). In most cases, however, no quality assessment is reported for sensor-to-MRI coregistrations. If any, typically root mean squares (RMS) of point residuals are provided. It has been shown, however, that RMS of residuals do not correlate with coregistration errors. We suggest using target registration error (TRE) as criterion for the quality of sensor-to-MRI coregistrations. TRE measures the effect of uncertainty in coregistrations at all points of interest. In total, 5544 data sets with sensor-to-head and 128 head-to-MRI coregistrations, from a single MEG laboratory, were analyzed. An adaptive Metropolis algorithm was used to estimate the optimal coregistration and to sample the coregistration parameters (rotation and translation). We found an average TRE between 1.3 and 2.3mm at the head surface. Further, we observed a mean absolute difference in coregistration parameters between the Metropolis and iterative closest point algorithm of (1.9 $\pm$ 1.5)° and (1.1 $\pm$ 0.9)mm. A paired sample t-test indicated a significant improvement in goal function minimization by using the Metropolis algorithm. The sampled parameters allowed computation of TRE on the entire grid of the MRI volume. Hence, we recommend the Metropolis algorithm for head-to-MRI coregistrations.