论文标题

攻击和捍卫公共云的机器学习应用

Attacking and Defending Machine Learning Applications of Public Cloud

论文作者

Goodman, Dou, Xin, Hao

论文摘要

对抗性攻击打破了传统安全防御的界限。对于对抗性攻击和云服务的特征,我们建议用于机器学习应用程序的安全开发生命周期,例如ML的SDL。 ML的SDL通过减少ML-AS-A-Service中漏洞的数量和严重性来帮助开发人员构建更安全的软件,同时降低开发成本。

Adversarial attack breaks the boundaries of traditional security defense. For adversarial attack and the characteristics of cloud services, we propose Security Development Lifecycle for Machine Learning applications, e.g., SDL for ML. The SDL for ML helps developers build more secure software by reducing the number and severity of vulnerabilities in ML-as-a-service, while reducing development cost.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源