论文标题
低维拓扑系统中的量子动力学
Quantum dynamics in low-dimensional topological systems
论文作者
论文摘要
拓扑问题的发现彻底改变了凝结物理物理的领域,从而引起了许多有趣的现象,并促进了新的量子技术的发展。在本文中,我们研究了在低维拓扑系统中发生的量子动力学,特别是拓扑绝缘子实例的1D和2D晶格。首先,我们研究了Doubleons的动力学,这是在具有强大的Hubbard样相互作用的系统中出现的两个Fermions的结合状态。我们还包括周期性驱动的效果,并研究相互作用与驱动之间的相互作用如何产生新现象。其中突出的是SSH-Hubbard模型中拓扑边缘状态的消失,在某些2D晶格中Doublons的Sublattice限制,以及在任何有限晶格的边缘之间的Doublons的远距离传递。然后,我们将有关拓扑绝缘体的见解应用于相当不同的设置:与SSH模型的光子类似物结合的量子发射器。在此设置中,我们计算发射器的动力学,将光子SSH模型作为集体结构浴。我们发现浴缸的拓扑性质反映了光子结合状态以及发射器之间的有效偶极相互作用。同样,浴的拓扑会影响单光子散射特性。最后,我们窥视使用此类设置来模拟旋转汉密尔顿人的可能性,并讨论系统支持的不同基础。
The discovery of topological matter has revolutionized the field of condensed matter physics giving rise to many interesting phenomena, and fostering the development of new quantum technologies. In this thesis we study the quantum dynamics that take place in low dimensional topological systems, specifically 1D and 2D lattices that are instances of topological insulators. First, we study the dynamics of doublons, bound states of two fermions that appear in systems with strong Hubbard-like interactions. We also include the effect of periodic drivings and investigate how the interplay between interaction and driving produces novel phenomena. Prominent among these are the disappearance of topological edge states in the SSH-Hubbard model, the sublattice confinement of doublons in certain 2D lattices, and the long-range transfer of doublons between the edges of any finite lattice. Then, we apply our insights about topological insulators to a rather different setup: quantum emitters coupled to the photonic analogue of the SSH model. In this setup we compute the dynamics of the emitters, regarding the photonic SSH model as a collective structured bath. We find that the topological nature of the bath reflects itself in the photon bound states and the effective dipolar interactions between the emitters. Also, the topology of the bath affects the single-photon scattering properties. Finally, we peek into the possibility of using these kind of setups for the simulation of spin Hamiltonians and discuss the different ground states that the system supports.