论文标题

对称保存耦合群集的对称双重函数和自符矛盾的奇数rpa

Symmetry conserving Coupled Cluster Doubles wave function and the Self-Consistent odd particle number RPA

论文作者

Jemaï, Mohsen, Schuck, Peter

论文摘要

在\ cite {tohy13}中发现了耦合群集双打(CCD)波函数的单个和三重效率的精确杀伤算子。使用这些运算符和运动方程(EOM)方法,建立了所谓的自符合的奇数粒子数随机相位近似(ODD-RPA)。加上两个身体密度矩阵的平稳性条件,表明杀戮条件允许降低奇数-RPA方程矩阵元素中包含的相关函数的顺序,以使单个粒子职业数量完全自我一致的方程式。后者和基态能量的出色结果是从弱耦合到强耦合的准确溶解模型中获得的。

Mixing single and triple fermions an exact killing operator of the Coupled Cluster Doubles (CCD) wave function with good symmetry was found in \cite{Tohy13}. Using these operators with the equation of motion (EOM) method the so-called self-consistent odd particle number random phase approximation (odd-RPA) was set up. Together with the stationarity condition of the two body density matrix it is shown that the killing conditions allow to reduce the order of correlation functions contained in the matrix elements of the odd-RPA equations to a fully self consistent equation for the single particle occupation numbers. Excellent results for the latter and the ground state energies are obtained in an exactly solvable model from weak to strong couplings.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源