论文标题

生成合奏回归:从具有物理信息的深层生成模型的合奏的观察中学习粒子动力学

Generative Ensemble Regression: Learning Particle Dynamics from Observations of Ensembles with Physics-Informed Deep Generative Models

论文作者

Yang, Liu, Daskalakis, Constantinos, Karniadakis, George Em

论文摘要

我们提出了一种通过在离散和稀疏的时间瞬间观察粒子集合,即多个“快照”,推断出管理随机的普通微分方程(SOD)的新方法。粒子坐标在一个时间瞬间,可能是嘈杂或截短的,在每个快照中都记录下来,但在快照中不属于不属。通过训练生成“假”样品路径的物理信息生成模型,我们旨在将观察到的粒子集合分布与概率测量空间中的曲线拟合,这是由推断的粒子动力学引起的。我们采用不同的指标来量化分布之间的差异,例如,切成薄片的瓦斯泰因距离和生成对抗网络(GAN)中的对抗损失。我们将此方法称为生成的“集合回归”(GER),类似于经典的“点回归”,在该方法中,我们通过在欧几里得空间中执行回归来推断动力学。我们通过学习由布朗动作和征收过程的sode的粒子集合的漂移和扩散项来说明GER。我们还讨论了如何用嘈杂或截断的观察结果治疗病例。除了由独立粒子组成的系统外,我们还通过构建物理信息损失函数来解决具有未知相互作用潜在参数的非本地相互作用粒子系统。最后,我们通过证明提供理论支持的收敛定理来研究配对观测值的方案,并讨论如何在这种情况下降低维度。

We propose a new method for inferring the governing stochastic ordinary differential equations (SODEs) by observing particle ensembles at discrete and sparse time instants, i.e., multiple "snapshots". Particle coordinates at a single time instant, possibly noisy or truncated, are recorded in each snapshot but are unpaired across the snapshots. By training a physics-informed generative model that generates "fake" sample paths, we aim to fit the observed particle ensemble distributions with a curve in the probability measure space, which is induced from the inferred particle dynamics. We employ different metrics to quantify the differences between distributions, e.g., the sliced Wasserstein distances and the adversarial losses in generative adversarial networks (GANs). We refer to this method as generative "ensemble-regression" (GER), in analogy to the classic "point-regression", where we infer the dynamics by performing regression in the Euclidean space. We illustrate the GER by learning the drift and diffusion terms of particle ensembles governed by SODEs with Brownian motions and Levy processes up to 100 dimensions. We also discuss how to treat cases with noisy or truncated observations. Apart from systems consisting of independent particles, we also tackle nonlocal interacting particle systems with unknown interaction potential parameters by constructing a physics-informed loss function. Finally, we investigate scenarios of paired observations and discuss how to reduce the dimensionality in such cases by proving a convergence theorem that provides theoretical support.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源