论文标题

Powerset Colgebras的二元性

Duality for powerset coalgebras

论文作者

Bezhanishvili, Guram, Carai, Luca, Morandi, Patrick

论文摘要

让Caba成为完整和原子布尔代数的类别,并成为完整的布尔同构,并让CSL成为完整的见面和完整的同性恋类别。我们表明,从CABA到CSL的健忘函子具有左伴随。这使我们能够在CABA上描述一个内functuncontor H,以使H的代数类别(H)双重等于煤层的煤层类(P)类别的powerset enerofunctor p。结果,我们从Tarski二元性中得出了Thomason二重性,因此与Jónsson-Tarski二元性如何从石头双重性得出。

Let CABA be the category of complete and atomic boolean algebras and complete boolean homomorphisms, and let CSL be the category of complete meet-semilattices and complete meet-homomorphisms. We show that the forgetful functor from CABA to CSL has a left adjoint. This allows us to describe an endofunctor H on CABA such that the category Alg(H) of algebras for H is dually equivalent to the category Coalg(P) of coalgebras for the powerset endofunctor P on Set. As a consequence, we derive Thomason duality from Tarski duality, thus paralleling how Jónsson-Tarski duality is derived from Stone duality.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源