论文标题
由于有限偏见,介观超导装置的电导不对称
Conductance asymmetries in mesoscopic superconducting devices due to finite bias
论文作者
论文摘要
正常金属渗透连接器连接中的隧穿电导光谱是探测介质超导装置(例如Majoraana纳米线)中Andreev结合状态的重要工具。在理想的超导装置中,由于散射矩阵的颗粒 - 孔对称性和单位性,子段电导遵守特定的对称关系。但是,实验数据通常表现出与这些对称性甚至显式崩溃的偏差。在这项工作中,我们确定了一种机制,该机制会导致不对称的不对称,而不会中毒。特别是,我们研究了有限偏差的效果,并包括隧道屏障透明度中的电压依赖性,发现现实设备参数的明显不对称性。重要的是要确定电导不对称的物理起源:与其他可能的机制(例如准粒子中毒)相反,有限偏置效应并不损害拓扑量子的性能。为此,我们确定可用于实验确定有限偏置效应是否是电导不对称的来源的特征。
Tunneling conductance spectroscopy in normal metal-superconductor junctions is an important tool for probing Andreev bound states in mesoscopic superconducting devices, such as Majorana nanowires. In an ideal superconducting device, the subgap conductance obeys specific symmetry relations, due to particle-hole symmetry and unitarity of the scattering matrix. However, experimental data often exhibits deviations from these symmetries or even their explicit breakdown. In this work, we identify a mechanism that leads to conductance asymmetries without quasiparticle poisoning. In particular, we investigate the effects of finite bias and include the voltage dependence in the tunnel barrier transparency, finding significant conductance asymmetries for realistic device parameters. It is important to identify the physical origin of conductance asymmetries: in contrast to other possible mechanisms such as quasiparticle poisoning, finite-bias effects are not detrimental to the performance of a topological qubit. To that end we identify features that can be used to experimentally determine whether finite-bias effects are the source of conductance asymmetries.