论文标题

双曲线表面上的不同距离

Distinct distances on hyperbolic surfaces

论文作者

Meng, Xianchang

论文摘要

对于任何CofInite fuchsian $γ\ subset {\ rm psl}(2,2,\ mathbb {r})$,我们表明,双曲表面$γ\ backslash \ backslash \ backslash \ mathbb \ mathbb {h}^h}^2 $ for y Mathbb {h}^$ geq c_ geqc_γ\ frac \ frac \ frac {n}的任何集合$ n $点$C_γ> 0 $仅取决于$γ$。特别是,对于$γ$,是$ {\ rm psl}的任何有限索引子组(2,2,\ mathbb {z})$,$μ= [{\ rm psl}(\ rm psl}(2,\ mathbb {z}) $ \ geq c \ frac {n} {μ\ log n} $独特的距离,对于某些绝对常数$ c> 0 $。

For any cofinite Fuchsian group $Γ\subset {\rm PSL}(2, \mathbb{R})$, we show that any set of $N$ points on the hyperbolic surface $Γ\backslash\mathbb{H}^2$ determines $\geq C_Γ \frac{N}{\log N}$ distinct distances for some constant $C_Γ>0$ depending only on $Γ$. In particular, for $Γ$ being any finite index subgroup of ${\rm PSL}(2, \mathbb{Z})$ with $μ=[{\rm PSL}(2, \mathbb{Z}): Γ]<\infty$, any set of $N$ points on $Γ\backslash\mathbb{H}^2$ determines $\geq C\frac{N}{μ\log N}$ distinct distances for some absolute constant $C>0$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源