论文标题
拓扑单型的共同体学
Cohomology of Topologised Monoids
论文作者
论文摘要
我们证明了群体共同体的标准结果 - 即,存在较长的精确序列,通过第一个共同体学组对托管的分类,Shapiro的引理,Hochschild-Serre光谱序列,直接产品案例中的Cochain复合物的分解以及Jannsen在恢复问题上的结果 - 以及詹斯森的恢复性问题,以及诸如共同的恢复性范围,以及诸如共同的分析。同时学。我们还证明了某些单型物体的结果。在这里考虑的共同体学组都通过科司复合物具有非常具体的解释。因此,我们不使用同源代数的方法,而是使用可追溯到Hochschild和Serre的技术对Cochains水平进行明确的计算。
We prove standard results of group cohomology -- namely, existence of a long exact sequence, classification of torsors via the first cohomology group, Shapiro's lemma, the Hochschild-Serre spectral sequence, a decomposition of the cochain complex in the direct product case, and Jannsen's result on the recovery problem -- for cohomology theories such as continuous, analytic, bounded, and pro-analytic cohomology. We also prove these results for certain monoids. The cohomology groups considered here all have very concrete interpretations by means of a cochain complex. Therefore, we do not use methods of homological algebra, but explicit calculations on the level of cochains, using techniques dating back to Hochschild and Serre.