论文标题
三维随机键量量子Heisenberg Antiferromagnet中的普遍性
Universality in the three-dimensional random bond quantum Heisenberg antiferromagnet
论文作者
论文摘要
三维淬灭的随机键稀释$(J_1-J_2)$ QUANSUM HEISENBERG ANTIFERROMAGNET在简单的立方晶格上研究。使用广泛的随机系列扩展量子蒙特卡洛模拟,我们以$ l \ times l \ times l $ lattice lattice lat $ l = 48 $进行长期运行。通过采用标准有限尺寸缩放方法,Néel温度的数值以高精度确定,这是耦合比的函数$ r = j_2/j_1 $。根据估计的关键指数,我们发现所考虑模型的关键行为属于纯典的$ 3D $ $ o(3)$ Heisenberg通用类。
The three-dimensional quenched random bond diluted $(J_1-J_2)$ quantum Heisenberg antiferromagnet is studied on a simple-cubic lattice. Using extensive stochastic series expansion quantum Monte Carlo simulations, we perform very long runs for $L \times L \times L$ lattice up to $L=48$. By employing standard finite-size scaling method, the numerical values of the Néel temperature are determined with high precision as a function of the coupling ratio $r=J_2/J_1$. Based on the estimated critical exponents, we find that the critical behavior of the considered model belongs to the pure classical $3D$ $O(3)$ Heisenberg universality class.