论文标题
使用高斯混合模型增强瞬态重力波搜索的灵敏度
Enhancing the sensitivity of transient gravitational wave searches with Gaussian Mixture Models
论文作者
论文摘要
确定埋在非平稳的非高斯噪声中的引力波瞬态的存在,该噪声通常包含伪造的噪声瞬变(故障)是一项非常具有挑战性的任务。对于给定的数据集,瞬态重力波搜索会产生相应的触发器列表,这些触发器表明可能存在引力波信号。这些触发因素通常是模仿重力波信号特征的故障结果。为了区分故障与真正的重力波信号,搜索算法估算了一系列触发属性,并将阈值应用于这些触发属性,以将信号与噪声分开。在这里,我们介绍使用高斯混合模型,一种监督的机器学习方法,作为对多维触发属性空间进行建模的一种手段。我们通过将其应用于Cooherent Waveburst搜索Ligo O1数据中的通用爆发来证明这种方法。通过为信号和背景噪声属性空间构建高斯混合模型,我们表明我们可以显着提高相干波爆搜索的敏感性,并强烈抑制小故障和背景噪声的影响,而无需使用原始O1搜索所采用的多个搜索箱。我们表明,检测概率提高了10倍,导致重力波信号(如GW150914)的统计显着性提高。
Identifying the presence of a gravitational wave transient buried in non-stationary, non-Gaussian noise which can often contain spurious noise transients (glitches) is a very challenging task. For a given data set, transient gravitational wave searches produce a corresponding list of triggers that indicate the possible presence of a gravitational wave signal. These triggers are often the result of glitches mimicking gravitational wave signal characteristics. To distinguish glitches from genuine gravitational wave signals, search algorithms estimate a range of trigger attributes, with thresholds applied to these trigger properties to separate signal from noise. Here, we present the use of Gaussian mixture models, a supervised machine learning approach, as a means of modelling the multi-dimensional trigger attribute space. We demonstrate this approach by applying it to triggers from the coherent Waveburst search for generic bursts in LIGO O1 data. By building Gaussian mixture models for the signal and background noise attribute spaces, we show that we can significantly improve the sensitivity of the coherent Waveburst search and strongly suppress the impact of glitches and background noise, without the use of multiple search bins as employed by the original O1 search. We show that the detection probability is enhanced by a factor of 10, leading enhanced statistical significance for gravitational wave signals such as GW150914.