论文标题

经验功能的密度灵敏度

Density sensitivity of empirical functionals

论文作者

Song, Suhwan, Vuckovic, Stefan, Sim, Eunji, Burke, Kieron

论文摘要

参数在近似密度函数中的经验拟合很常见。这种拟合将自一致密度的误差与能量功能中的误差混合在一起,但是密度校正的DFT(DC-DFT)将这两个分开。我们用在不同的债券长度上应用于$ h_2^+$的玩具功能的灾难性故障说明,其中标准拟合过程错过了确切的功能; Grimme的D3适合非共价相互作用,该相互作用可能会被诸如Water27和B30数据集中的大密度误差所污染;和接受自洽密度训练的双杂交型,在密度驱动错误的系统上的性能较差。在这些情况下,通过使用Hartree-Fock(HF)密度而不是自洽密度,可以找到更准确的结果。对于小水群的结合能,误差大大减少。在大距离处具有100 \%HF的范围分离杂种,因此这种效果的影响少得多。

Empirical fitting of parameters in approximate density functionals is common. Such fits conflate errors in the self-consistent density with errors in the energy functional, but density-corrected DFT (DC-DFT) separates these two. We illustrate with catastrophic failures of a toy functional applied to $H_2^+$ at varying bond lengths, where the standard fitting procedure misses the exact functional; Grimme's D3 fit to noncovalent interactions, which can be contaminated by large density errors such as in the WATER27 and B30 datasets; and double-hybrids trained on self-consistent densities, which can perform poorly on systems with density-driven errors. In these cases, more accurate results are found at no additional cost, by using Hartree-Fock (HF) densities instead of self-consistent densities. For binding energies of small water clusters, errors are greatly reduced. Range-separated hybrids with 100\% HF at large distances suffer much less from this effect.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源