论文标题

轻量级单图像超级分辨率的子像素背预测网络

Sub-Pixel Back-Projection Network For Lightweight Single Image Super-Resolution

论文作者

Banerjee, Supratik, Ozcinar, Cagri, Rana, Aakanksha, Smolic, Aljosa, Manzke, Michael

论文摘要

基于卷积神经网络(CNN)的方法已为单像超分辨率(SISR)取得了巨大成功。但是,大多数模型都试图提高重建精度,同时增加模型参数数量的需求。为了解决这个问题,在本文中,我们研究了基于CNN的SISR方法的参数数量和计算成本的数量,同时保持超分辨率重建性能的准确性。为此,我们介绍了一种针对SISR的新型网络体系结构,该网络体系结构在重建质量和低计算复杂性之间取得了良好的权衡。具体而言,我们使用子像素卷积而不是反向卷积层提出了迭代反射架构。我们通过广泛的定量和定性评估评估了我们提出的模型的计算和重建精度的性能。实验结果表明,我们提出的方法使用较少的参数并降低了计算成本,同时在众所周知的四个SR基准数据集上保持了针对最先进的SISR方法的重建精度。代码可从“ https://github.com/supratikbanerjee/subpixel-backproctiond_superresolution”获得。

Convolutional neural network (CNN)-based methods have achieved great success for single-image superresolution (SISR). However, most models attempt to improve reconstruction accuracy while increasing the requirement of number of model parameters. To tackle this problem, in this paper, we study reducing the number of parameters and computational cost of CNN-based SISR methods while maintaining the accuracy of super-resolution reconstruction performance. To this end, we introduce a novel network architecture for SISR, which strikes a good trade-off between reconstruction quality and low computational complexity. Specifically, we propose an iterative back-projection architecture using sub-pixel convolution instead of deconvolution layers. We evaluate the performance of computational and reconstruction accuracy for our proposed model with extensive quantitative and qualitative evaluations. Experimental results reveal that our proposed method uses fewer parameters and reduces the computational cost while maintaining reconstruction accuracy against state-of-the-art SISR methods over well-known four SR benchmark datasets. Code is available at "https://github.com/supratikbanerjee/SubPixel-BackProjection_SuperResolution".

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源