论文标题
递归公用事业的存在和独特性
Existence and uniqueness of recursive utilities without boundedness
论文作者
论文摘要
本文为几种重要的偏好类别提供了原始的,易于验证的足够条件和(随机)递归公用事业的独特性。为了适应实践中常用的模型,我们允许状态空间和每个周期实用程序都没有结合。对于我们研究的许多模型,生存和独特性是在单个原始的“薄尾巴”条件下建立的,该条件是针对每个周期公用事业的生长分布的。我们向稳健的偏好,模棱两可的厌恶模式和了解隐藏状态的模型以及爱泼斯坦 - Zin的偏好提出了几种应用。
This paper derives primitive, easily verifiable sufficient conditions for existence and uniqueness of (stochastic) recursive utilities for several important classes of preferences. In order to accommodate models commonly used in practice, we allow both the state-space and per-period utilities to be unbounded. For many of the models we study, existence and uniqueness is established under a single, primitive "thin tail" condition on the distribution of growth in per-period utilities. We present several applications to robust preferences, models of ambiguity aversion and learning about hidden states, and Epstein-Zin preferences.