论文标题
通过局部坐标编码改善生成对抗网络
Improving Generative Adversarial Networks with Local Coordinate Coding
论文作者
论文摘要
生成对抗网络(GAN)在从某些预定义的先前分布(例如高斯噪音)中生成现实数据方面取得了显着成功。但是,这种先前的分布通常与真实数据无关,因此可能会失去数据的语义信息(例如,图像中的几何结构或内容)。实际上,语义信息可能由从数据中学到的一些潜在分布表示。但是,这种潜在分布可能会在GAN的数据采样中遇到困难。在本文中,我们不是从预定义的先验分布中取样,而是提出了具有局部坐标编码(LCC)的LCCGAN模型,以提高生成数据的性能。首先,我们在LCCGAN中提出了一种LCC采样方法,以从潜在的歧管中采样有意义的点。使用LCC采样方法,我们可以利用潜在歧管上的本地信息,从而以有希望的质量生成新数据。其次,我们通过在发电机近似中引入一个高阶术语来提出一个改进的版本,即LCCGAN ++。该术语能够实现更好的近似值,从而进一步提高了性能。更重要的是,我们得出了LCCGAN和LCCGAN ++的概括,并证明低维输入足以实现良好的概括性能。在四个基准数据集上进行的广泛实验证明了所提出的方法比现有gan的优越性。
Generative adversarial networks (GANs) have shown remarkable success in generating realistic data from some predefined prior distribution (e.g., Gaussian noises). However, such prior distribution is often independent of real data and thus may lose semantic information (e.g., geometric structure or content in images) of data. In practice, the semantic information might be represented by some latent distribution learned from data. However, such latent distribution may incur difficulties in data sampling for GANs. In this paper, rather than sampling from the predefined prior distribution, we propose an LCCGAN model with local coordinate coding (LCC) to improve the performance of generating data. First, we propose an LCC sampling method in LCCGAN to sample meaningful points from the latent manifold. With the LCC sampling method, we can exploit the local information on the latent manifold and thus produce new data with promising quality. Second, we propose an improved version, namely LCCGAN++, by introducing a higher-order term in the generator approximation. This term is able to achieve better approximation and thus further improve the performance. More critically, we derive the generalization bound for both LCCGAN and LCCGAN++ and prove that a low-dimensional input is sufficient to achieve good generalization performance. Extensive experiments on four benchmark datasets demonstrate the superiority of the proposed method over existing GANs.