论文标题

从可逆花过滤器中进行部分提取的故障概率分析

Failure Probability Analysis for Partial Extraction from Invertible Bloom Filters

论文作者

Kubjas, Ivo, Skachek, Vitaly

论文摘要

可逆的布鲁姆过滤器(IBF)是一个数据结构,它采用了一组较小的哈希功能。 IBF允许有效地插入,并具有很高的概率,以有效提取数据。但是,提取的成功概率取决于IBF的存储开销以及存储的数据量。在需要提取存储在IBF中的数据的应用程序中,例如SET对帐,该提取只能通过仅恢复部分存储的数据来部分成功。在这项工作中,分析了从IBF部分提取数据的成功概率。结果表明,部分提取在应用程序(例如设置对帐)中可能很有用。特别是,它允许使用IBF设置对帐,在该IBF上,存储开销太小而无法进行完全提取。介绍了迭代集对帐协议中的回合数量的上限。数值结果是通过分析得出的,并通过计算机模拟确认。

Invertible Bloom Filter (IBF) is a data structure, which employs a small set of hash functions. An IBF allows for an efficient insertion and, with high probability, for an efficient extraction of the data. However, the success probability of the extraction depends on the storage overhead of an IBF and the amount of the data stored. In an application, such as set reconciliation, where there is a need to extract data stored in the IBF, the extraction might succeed only partially, by recovering only part of the stored data. In this work, the probability of success for a partial extraction of data from an IBF is analyzed. It is shown that partial extraction could be useful in applications, such as set reconciliation. In particular, it allows for set reconciliation by using the IBF, where the storage overhead is too small to allow full extraction. An upper bound on the number of rounds in an iterative set reconciliation protocol is presented. The numerical results are derived analytically, and confirmed by the computer simulations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源