论文标题
非线性MPC,用于避免碰撞和控制动态障碍的无人机的控制
Nonlinear MPC for Collision Avoidance and Controlof UAVs With Dynamic Obstacles
论文作者
论文摘要
本文提出了一种新型的非线性模型预测控制(NMPC),用于导航和避开无人机(UAV)的障碍物。提出的NMPC公式允许完全参数障碍轨迹,而在本文中,我们应用了分类方案来区分不同种类的轨迹以预测未来的障碍位置。轨迹计算是从初始条件完成的,并作为附加输入馈送到NMPC。所使用的求解器是非线性,非凸线求解器近端平均牛顿进行最佳控制(PANOC)及其相关的软件打开(优化引擎),在该软件中,我们应用惩罚方法来正确考虑导航期间的障碍和其他约束。所提出的NMPC方案允许使用50 ms的采样时间和障碍轨迹和NMPC问题的两秒预测进行实时解决方案,这意味着该方案可以被视为局部路径分布器。本文将介绍NMPC成本函数和约束配方,以及处理动态障碍的方法。我们包括多个实验室实验,以证明所提出的控制体系结构的功效,并表明所提出的方法为动态障碍物避免方案提供了快速和计算稳定的解决方案。
This article proposes a Novel Nonlinear Model Predictive Control (NMPC) for navigation and obstacle avoidance of an Unmanned Aerial Vehicle (UAV). The proposed NMPC formulation allows for a fully parametric obstacle trajectory, while in this article we apply a classification scheme to differentiate between different kinds of trajectories to predict future obstacle positions. The trajectory calculation is done from an initial condition, and fed to the NMPC as an additional input. The solver used is the nonlinear, non-convex solver Proximal Averaged Newton for Optimal Control (PANOC) and its associated software OpEn (Optimization Engine), in which we apply a penalty method to properly consider the obstacles and other constraints during navigation. The proposed NMPC scheme allows for real-time solutions using a sampling time of 50 ms and a two second prediction of both the obstacle trajectory and the NMPC problem, which implies that the scheme can be considered as a local path-planner. This paper will present the NMPC cost function and constraint formulation, as well as the methodology of dealing with the dynamic obstacles. We include multiple laboratory experiments to demonstrate the efficacy of the proposed control architecture, and to show that the proposed method delivers fast and computationally stable solutions to the dynamic obstacle avoidance scenarios.