论文标题

在离子液体vacuum界面处的胶体纳米粒子单层的充电驱动和熔化

Charging-driven coarsening and melting of a colloidal nanoparticle monolayer at an ionic liquid-vacuum interface

论文作者

Bischak, Connor G., Raybin, Jonathan G., Kruppe, Jonathon W., Ginsberg, Naomi S.

论文摘要

我们诱导和研究最初静态纳米粒子胶体单层在离子液体效量界面上的粗糙和熔化动力学,该界面是由聚焦的,扫描的电子束驱动的。通过谷物界面迁移和较大的运动(例如谷物旋转)进行变形,通常是通过滑动位错来促进的。使用电视模型来解释驱动单层熔融熔化的面积分数的逐渐减小,该模型一旦其积累的电荷募集足够足够的反词以集成粒子,界面处的颗粒就可以溶剂化。在从单层中去除随机粒子的前提下,在Lennard-Jones潜力的模拟中概括了熔化。胶体系统的这种新的驱动机制,我们显示的动态时间尺度可以通过加速电压来控制,它打开了动态操纵粒子相互作用而无需改变粒子固有特性或表面处理的可能性。此外,电子成像所利用的粒径减小为观察力和时间尺度的机会较小的探索机制中的机会中间引入了典型胶体和分子系统之间的中间。

We induce and investigate the coarsening and melting dynamics of an initially static nanoparticle colloidal monolayer at an ionic liquid-vacuum interface, driven by a focused, scanning electron beam. Coarsening occurs through grain interface migration and larger-scale motions such as grain rotations, often facilitated by sliding dislocations. The progressive decrease in area fraction that drives melting of the monolayer is explained using an electrowetting model whereby particles at the interface are solvated once their accumulating charge recruits sufficient counterions to subsume the particle. Subject to stochastic particle removal from the monolayer, melting is recapitulated in simulations with a Lennard-Jones potential. This new driving mechanism for colloidal systems, whose dynamical timescales we show can be controlled with the accelerating voltage, opens the possibility to manipulate particle interactions dynamically without need to vary particle intrinsic properties or surface treatments. Furthermore, the decrease in particle size availed by electron imaging presents opportunities to observe force and time scales in a lesser-explored regime intermediate between typical colloidal and molecular systems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源